博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[SPOJ7001]VLATTICE - Visible Lattice Points
阅读量:6608 次
发布时间:2019-06-24

本文共 827 字,大约阅读时间需要 2 分钟。

题目大意:

  $q(q\leq50)$组询问,对于给定的$n(n\leq10^7)$,求$\displaystyle\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n[\gcd(i,j,k)=1]$。

思路:

  $原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

1 #include
2 #include
3 typedef long long int64; 4 inline int getint() { 5 register char ch; 6 while(!isdigit(ch=getchar())); 7 register int x=ch^'0'; 8 while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0'); 9 return x;10 }11 const int N=10000001,M=664580;12 bool vis[N];13 int mu[N],sum[N],p[M];14 inline void sieve() {15 mu[1]=1;16 for(register int i=2;i

 

原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

转载于:https://www.cnblogs.com/skylee03/p/8468562.html

你可能感兴趣的文章
第六篇 VIM你值得拥有!
查看>>
项目管理学习笔记之八.课程总结
查看>>
setjmp与longjmp的分析
查看>>
generate ascii table
查看>>
MATLAB绘制3D隐函数曲面的几种方法
查看>>
jquery改变链接移上光标时的颜色实例
查看>>
2013吉林通化邀请赛 1005 GCD and LCM
查看>>
高淇java300集JAVA常用类作业
查看>>
oracle大型数据库系统在AIX/unix上的实战详解 这本书要二版
查看>>
关于JAVA中的static方法、并发问题以及JAVA运行时内存模型
查看>>
Direct3D 初涉: 颜色
查看>>
jquery的checked以及disabled
查看>>
XLua系统学习
查看>>
Scala提取器Extractor实战详解之Scala学习笔记-19
查看>>
vue--初识
查看>>
<Linux命令行学习 第一节> CentOS在虚拟机的安装
查看>>
MyEclipse(Eclipse)快捷键大全
查看>>
Vue.js(一)了解Vue
查看>>
** 不在 sudoers 文件中。此事将被报告。
查看>>
Python range() 函数
查看>>